Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST** supported **Department of Mathematics** # Faculty of Science Bachelor of Science (B.Sc.) **SUBJECT: Mathematics** B.Sc. V Semester **Paper-Core – Elements of Discrete Mathematics** **Course Outcomes** | CO. No. | Course Outcomes | Cognitive | |---------|--|-----------| | | | Level | | CO1 | Comprehend Indian Logic and its influence on Modern Logic | U, An, Ap | | | Analyse and Apply Relations and Lattices to Real World | | | CO2 | Correlate Boolean Algebra to Switching Circuit and Generate Applications | U, An, Ap | | | in Real Life. Analyse and Evaluate a Minimal Boolean Function | | | CO3 | Deduce the Practicality of Graph Theory and implement the techniques in | U, An, Ap | | | Real Life perspective. | | | CO4 | Understand and Apply Trees and Matrix Representation of Graphs | U, An, Ap | Credit and Marking Scheme | | | | Marks | | |--------|---------|----------|---------------|-------------| | Theory | Credits | | Total Mariles | | | | | Internal | External | Total Marks | | | 6 | 40 | 60 | 100 | | Total | 6 | 100 | | | **Evaluation Scheme** | | Marks | | | | |--------|---|--------------------------|--|--| | Theory | Internal | External | | | | | 3 Internal Exams of 20 Marks each during the Semester | 1 External Exams | | | | | (Best 2 will be taken) | (At the End of Semester) | | | Mila Dint purit Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST supported** **Department of Mathematics** # Content of the Course Theory No. of Lectures Hours per Week: 6 Hours. per Week Total No. of Lectures: 90 Hours. Maximum Marks: 60 | Unit | | Topics | No. of Lectures | |------|-------|---|---------------------| | l | 1.1 | Indian Logic | 1,000 02 = 0.010100 | | | 1.1.1 | Origins | | | | 1.1.2 | The schools Vaisheshika | | | | 1.1.3 | Catuskoti | | | | 1.1.4 | Nyaya | | | | 1.1.5 | Jain Logic | | | | 1.1.6 | Buddhist Logic | | | | 1.1.7 | Navya-Nyaya | | | | 1.1.8 | Influence of Indian Logic on Modern Logic | | | | 1.1.9 | Boolean Logic and Indian Thoughts | | | | 1.2 | Relations | 34 | | | 1.2.1 | Binary, Inverse, Composite and Equivalence relation | | | | 1.2.2 | Equivalence classes and its properties | | | | 1.2.3 | Partition of a set | | | | 1.2.4 | Partial order relation | | | | 1.2.5 | Partially ordered and totally ordered sets | | | | 1.2.6 | Hasse diagram | | | | 1.3 | Lattices | | | | 1.3.1 | Definition and examples | | | | 1.3.2 | Dual, bounded, distributive and complemented lattices | | | 11 | 2.1 | Boolean Algebra | 34 | | | 2.1.1 | Definition and properties | | | | 2.1.2 | Switching circuits and its applications | | | | 2.1.3 | Logic gates and circuits | | | | 2.2 | Boolean Functions | | | | 2.2.1 | Disjunctive and conjunctive normal forms | | | | 2.2.2 | | | | | 2.3 | Minimize the Boolean function using Karnaugh Map | | my gus Mila ZXY) Jodana, # Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) # College with Potential for Excellence by UGC ## **DST-FIST** supported ## **Department of Mathematics** | 111 | 3. Graphs: | 20 | |-----|---|----| | | 3.1 Definition and types of graphs | 28 | | | 5.2 Subgraphs | | | | 3.3 Walk, path and circuit | | | | 3.4 Connected and disconnected graph | | | | 3.5 Euler graph | | | | 3.6 Hamiltonian path and circuit | | | | 3.7 Dijkstra's Algorithm for shortest paths in weighted graph | | | IV | 4. Tree: | 24 | | | 4.1 Trees and properties | 24 | | | 4.2 Rooted, Binary and Spanning tree | | | | 4.3 Rank and nullity of a graph | | | | 4.4 Kruskal's and Prim's Algorithm | | | | 4.5 Cut- set and Its Properties | | | | 4.6 Fundamental Circuits and Cut- set | | | | 4.7 Planar graphs | | | | 4.8 Kuratowski's two graph | | | | 4.9 Matrix representation of graph | | | | 4.9.1 Incidence | | | | 4.9.2 Adjacency | | | | 4.9.3 Circuit | | | | 4.9.3 Cut – Set | | | | 4.9.4 Path | | # References #### **Text Books:** - 1. J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications To Computer Science, McGraw Hill Education, 1st edition, 2017. - 2. Satinder Bal Gupta, C. P. Gandhi: Discrete Structures, Laxmi Publication, 2010. - 3. C. L. Liu: Elements of Discrete Mathematics, Mac Graw Hill Education, 4th edition, 2017. - 4. Narsingh Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice Hall India Learning Private Limited, 1997. - 5. मध्यप्रदेश हिंदी ग्रन्थ अकादमी की पुस्तके। #### Reference Books: 1. Seymour Lipschutz and Mark Lipson: Discrete Mathematics (Schaums Outline), Mita Lunte Zzw.V Andana. Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) ## College with Potential for Excellence by UGC ## **DST-FIST** supported #### Department of Mathematics Mac Graw Hill Education, 3rd edition, 2017. - 2. Edgar G. Goodaire and Michael M. Parmenter. - 3. Discrete Mathematics with Graph Theory, Pearson Education Pt. Ltd., Indian Reprint 2003 0 0000 My gos Mila Just XX Jalangs Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST** supported **Department of Mathematics** # **Faculty of Science** Bachelor of Science (B.Sc.) SUBJECT: MATHEMATICS B.Sc. V Semester Paper- Disciplne Specific Elective **Numerical Methods and Scientific Computation** #### **Course Outcomes** | CO.No. | Course Outcomes | Cognitive
Level | |--------|--|--------------------| | CO1 | Understand numerical methods to find the solution of a system of linear equations. | U | | CO2 | Compute interpolation value for real data. | Е | | CO3 | Find quadrature by using various numerical methods. | Е | | CO4 | Solve system of linear equations by using various numerical techniques. | Ap | | CO5 | Obtain solutions of ordinary differential equations by using numerical methods. | Ap | Credit and Marking Scheme | | Credits | Ma | ırks | m . 135 . | |--------|---------|----------|----------|-------------| | | Credits | Internal | External | Total Marks | | Theory | 4 | 40 | 60 | 100 | | Total | 4 | | 100 | | ## **Evaluation Scheme** | | | Marks | | |--------|------------------------------|--------------------------|--| | | Internal | External | | | Theory | 3 Internal Exams of 20 Marks | 1 External Exams | | | | (During the Semester) | (At the End of Semester) | | | | (Best 2 will be taken) | (Semester) | | 0000 Wy A lunti XXXX W/ X Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST** supported **Department of Mathematics** # **Content of the Course** Theory No. of Lectures (in hours per week):4.5 Hrs. per week Total No. of Lectures: 60 Hrs. Maximum Marks: 60 | Methods for solving Algebraic and Transcendental Equations: 1.1 Ramanujan 1.2 Bisection 1.3 Regula Falsi 1.4 Secant 1.5 Newton-Raphson | Lectures
16 | |--|---| | 1.1 Kamanujan 1.2 Bisection 1.3 Regula Falsi 1.4 Secant 1.5 Newton-Raphson | | | 1.3 Regula Falsi1.4 Secant1.5 Newton-Raphson | | | 1.4 Secant 1.5 Newton-Raphson | | | 1.5 Newton-Raphson | | | 1.5 Newton-Raphson | 1 | | Internal 12 have | | | interpolation and Numerical Integration: | 16 | | 2.1 Lagrange Interpolation | 10 | | 2.2 Finite difference operators | | | 2.3 Interpolation formula using Differences | | | 2.3.1 Gregory-Newton Forward Difference Interpolation | | | 2.3.2 Gregory-Newton Backward Difference Interpolation | | | 2.4 Numerical Integration | | | 2.4.1 Newton-Cote's formulae | | | 2.4.2 Trapezoidal rule | | | 2.4.3 Simpson's 1/3 Rule | | | 2.4.4 Simpson's 3/8 Rule | | | | | | | | | 3.1 Direct method for solving system of linear equations | 24 | | 3.1.1 Gauss elimination | | | 3.1.2 LU decomposition | | | | | | | | | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | 4.1 Single step methods | 24 | | | | | | | | 4.1.3 Fuler | | | | | | | Interpolation and Numerical Integration: 2.1 Lagrange Interpolation 2.2 Finite difference operators 2.3 Interpolation formula using Differences 2.3.1 Gregory-Newton Forward Difference Interpolation 2.3.2 Gregory-Newton Backward Difference Interpolation 2.4 Numerical Integration 2.4.1 Newton-Cote's formulae 2.4.2 Trapezoidal rule 2.4.3 Simpson's 1/3 Rule 2.4.4 Simpson's 3/8 Rule 2.4.5 Gauss Integration Methods to Solve System of Linear Equations: 3.1 Direct method for solving system of linear equations | Mila Mila # Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) # College with Potential for Excellence by UGC #### **DST-FIST** supported #### Department of Mathematics | 4.2 Multistep methods | | |---------------------------|--| | 4.2.1 Predictor-corrector | | | 4.2.2 Modified Euler | | | 4.2.3 Milne-Simpson | | #### References #### Text Books: - 1. S. S. Sastry: Introductory Methods of Numerical Analysis, Prentice Hall India Learning Private Limited. Fifth edition, 2012. - 2. E. Balagurusamy: Numerical Methods, Tata McGraw Hill Publication, 2017. - 3. मध्यप्रदेश हिंदी ग्रंथ अकादमी की पुस्तके। #### Reference Books: 1. M.K. Jain, S. R. K. Iyengar, R. K. Jain, Numerical Method for Scientific and Engineering Computation, New Age International (P) Ltd., 1999. 2. Saxena H. C.: Finite Differences and Numerical Analysis, S Chand, 2010. my gril ila Dunti King Jo Joura / Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST** supported **Department of Mathematics** # Faculty of Science Bachelor of Science (B.Sc.) SUBJECT: Mathematics B.Sc. VI Semester Paper-Core – FUZZY SETS AND THEIR APPLICATIONS ## **Course Outcomes** | CO. No. | Course Outcomes Course Outcomes | Cognitive | |---------|--|-----------| | | | Level | | CO1 | Understand the difference between crisp sets and fuzzy sets, Fuzzy membership function, types and operations of fuzzy sets and their properties. | U, An, Ap | | CO2 | Fuzzy numbers and fuzzy arithmetic. | U, An | | CO3 | Basic concepts of fuzzy relations, fuzzy graphs and fuzzy logic. | U, An, Ap | | CO4 | Knowledge of m fuzzy sets and intuitionistic fuzzy sets. Understand Fuzzy relations, Crisp v/s Fuzzy relations. | U, An, Ap | **Credit and Marking Scheme** | | Credits | | _ | | |--------|---------|----------|----------|---------------| | Theory | | Internal | External | — Total Marks | | | 6 | 40 | 60 | 100 | | Total | 6 | 100 | | | # **Evaluation Scheme** | | Marks | | |--------|---|--------------------------| | Theory | Internal | External | | | 3 Internal Exams of 20 Marks each during the Semester | 1 External Exams | | | (Best 2 will be taken) | (At the End of Semester) | in And D. itu His/ W 3 Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST** supported **Department of Mathematics** # Content of the Course Theory No. of Lectures Hours per Week: 6 Hours, per Week Total No. of Lectures: 90 Hours. Maximum Marks: 60 | | wantan warks. 00 | | |------|--|-----------------| | Unit | Topics | | | I | Support height purlous of a f | No. of Lectures | | | Support height nucleus of a fuzzy set, cardinality of a fuzzy set containment of two fuzzy sets, degree of subsethood, Fuzzy set, Membership function, Basic definition and concepts, Types of Fuzzy sets- normal subnormal fuzzy set, normalization α -cut set, strong α -cut, convex fuzzy set, necessary and sufficient condition for convexity of a fuzzy set. | | | II | Operations on fuzzy sets, Union, Intersection, Complement of a fuzzy set, Decomposition of fuzzy sets, Cartesian Product, Algebraic product, Product of a fuzzy set with a crisp number, contract intensification and fuzzification Bounded sum and difference, t-norms, t-conorms, Power of a fuzzy set, Disjunctive sum of two fuzzy sets, examples | 34 | | 111 | Properties of fuzzy sets- commutative, associative, distributive, idempotent, identity, involution, De-Morgan's laws, and their proofs, equality of two fuzzy sets, examples. | 28 | | IV | The Zadeh Extension Principle, Fuzzy numbers, Fuzzy arithmetic, | | | | Fuzzy relations, Crisp v/s Fuzzy relations, Composite Fuzzy relation, Binary Fuzzy relations, Fuzzy equivalence relation, Fuzzy compatibility relation, Fuzzy relation equation, Similarity relations Fuzzy graphs. | 24 | | | | | ## References #### Text Books: - G.J. Klir and Yuan, Fuzzy sets and Fuzzy Logic: The compositional rule of inference, Prentice Hall of India, New Delhi, 1995. - 2. H.J. Zimmermann, Fuzzy set Theory and its Applications, Allied publishers Ltd, New Delhi 1991. ## Reference Books: - 1. Pundir and Pundir ,Fuzzy Sets and their Applications , Pragati Prakashan, Meerut, 2012 - 2. Timothy J.Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, 2010 m mil Mila ...leut Jan / Holono, Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC DST-FIST supported **Department of Mathematics** Bachelor of Science (B.Sc.) SUBJECT: Mathematics **B.Sc. VI Semester** Paper- Disciplne Specific Elective (DSE-1), Paper-1 Advanced Numerical Methods and Scientific Computation ## **Course Outcomes** | CO.No. | Course Outcomes | Cognitive
Level | |--------|---|--------------------| | COI | Understand and evaluate Hermite Interpolation, Piecewise Interpolation | U, E | | CO2 | Analyze and evaluate Spline Interpolation, Bivariate Interpolation and Lagrange Bivariate Interpolation. | An, E | | CO3 | Analyze ,evaluate and apply Approximation , Find Least Square approximation | An, E, Ap | | CO4 | Evaluate, analyze and apply extrapolation methods, Richardson's extrapolation ordinary differential equations and Difference Equations. | E, An, Ap | Credit and Marking Scheme | | Credits | Marks | | | |--------|---------|----------|----------|-------------| | | Credits | Internal | External | Total Marks | | Theory | 4 | 40 | 60 | 100 | | Total | 4 | | 100 | 100 | ## **Evaluation Scheme** | | I | Marks | |--------|---|---| | | Internal | External | | Theory | 3 Internal Exams of 20 Marks (During the Semester) (Best 2 will be taken) | l External Exams (At the End of Semester) | my Mila July 1 M Andanas Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST** supported **Department of Mathematics** # Content of the Course Theory No. of Lectures (in hours per week): 4.5 Hrs. per week Total No. of Lectures:60Hrs. Maximum Marks: 60 | Unit | Topics | No. Of
Lectures | |------|--|--------------------| | I | Interpolation: Hermite Interpolation Piecewise Interpolation Piecewise Linear Interpolation Piecewise Quadratic Interpolation Piecewise Cubic Interpolation Piecewise Cubic Interpolation using Hermite Type Data | 18 | | II | 2.1 Spline interpolation: 2.1.1 Quadratic spline interpolation 2.1.2 Cubic spline interpolation 2.1.3 Natural Spline 2.2 Bivariate interpolation 2.2.1 Lagrange Bivariate interpolation 2.2.2 Newton's Bivariate interpolation for Equispaced Points | 18 | | III | 3.1 Approximation: 3.1.1 L^p Norm for Discrete Data and Continuous Data 3.1.2 Euclidean Norm for Discrete Data and Continuous Data 3.1.3 Uniform Norm for Discrete Data and Continuous Data 3.2 Least squares Aproximation 3.2.1 Gram-Schmidt Orthogonalizing Process 3.2.2 Legendre Polynomials | 22 | | IV | 4.1 Extrapolation methods: 4.1.1 Richardson's Extrapolation 4.2 Ordinary differential equations 4.2.1 Reduction of Higher order Equations to the system of first order Differential Equations 4.2.2 System of Linear first order Differential Equations with Constant Coefficients | 22 | my gus Mila apris/ Andawa? Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) # College with Potential for Excellence by UGC ## **DST-FIST** supported ## **Department of Mathematics** | 4.3 Difference Equations. | | |---------------------------|--| | | | ## References ## Text Books: - 1. Numerical Method for scientific and Engineering computation by M.K. Jain , S.R.K. Iyenger , R.K. Jain south Edition (2003) , New Age . - 2. मध्यप्रदेश हिंदी ग्रंथ अकादमी की पुस्तके। #### Reference Books: - 1. Saxena H.C.: Finite Differences and Numerical Analysis, S Chand, 2010. - 2. S.S. Sastry: Introductory Methods of Numerical Analysis, Prentice Hall India Learning Private Limited, Fifth ediotion, 2012. 0000 my July ¥. **/ A. Jodona Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST** supported **Department of Mathematics** # **Faculty of Science** Bachelor of Science (B.Sc.) SUBJECT: MATHEMATICS B.Sc. VI Semester Paper- Discipline Specific Elective (DSE)- 2 **Integral Transform** #### **Course Outcomes** | CO.No. | Course Outcomes | Cognitive
Level | |--------|---|--------------------| | COI | Understanding about Laplace transform and its properties. | U | | CO2 | Solve ordinary differential equations using Laplace transform. | Ap | | CO3 | Familiarise with Fourier transform of functions. Relation between Laplace and Fourier transform. Apply the concept of the course in real life problems. | U, Ap | | CO4 | Explain Parseval's identity and applications of Fourier transform to boundary value problems. | AP | # **Credit and Marking Scheme** | | Credits | Marks | | 77 | |--------|---------|----------|----------|-------------| | | Credits | Internal | External | Total Marks | | Theory | 4 | 40 | 60 | 100 | | Total | 4 | | 100 | | ## **Evaluation Scheme** | | | Marks | | |--------|------------------------------|--------------------------|--| | | Internal | External | | | Theory | 3 Internal Exams of 20 Marks | l External Exams | | | | (During the Semester) | (At the End of Semester) | | | | (Best 2 will be taken) | (| | My And Mila Argusa, Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) College with Potential for Excellence by UGC **DST-FIST** supported **Department of Mathematics** ## **Content of the Course** ## Theory No. of Lectures (in hours per week):4.5 Hrs. per week Total No. of Lectures: 60 Hrs. Maximum Marks: 60 | Unit | Topics | No. of Lectures | |------|---|-----------------| | l | Laplace Transform: | 25 | | | 1.1 Linearity property | | | | 1.2 Existence theorem | | | | 1.3 Shifting theorem | | | | 1.4 Change of scale property | | | | 1.5 Laplace transform of derivatives and integrals | | | | 1.6 Differentiation and integration of the Laplace transforms | | | | 1.7 Multiplication and division by 't' | | | | 1.8 Periodic function | | | H | Inverse Laplace Transform: | 25 | | | 2.1 Linearity property | | | | 2.2 Shifting theorem | | | | 2.3 Change of scale property | | | | 2.4 Inverse Laplace transforms of derivatives and integrals | | | | 2.5 Multiplication and division by powers of p | | | | 2.6 Convolution theorem | | | | 2.7 Heaviside expansion theorem | | | Ш | Application of Laplace Transform: | 15 | | | 3.1 Solution of ordinary differential equation with constant coefficients | | | | 3.2 Solution of ordinary differential equation with variable coefficients | | | IV | Fourier Transform: | 15 | | | 4.1 Linearity property | | | | 4.2 Shifting theorem | | | | 4.3 Change of scale property | | | | 4.4 Modulation | | | | 4.5 Convolution theorem | | | | 4.6 Fourier transform of derivatives | | | | 4.7 Relations between Fourier transform and Laplace transform | | | | 4.8 Parseval's identity for Fourier transform | | | | 4.9 Solution of differential equation using Fourier transform | | Mila Punt July 1 A daug? Reaccredited 'A++' by NAAC with CGPA (3.58/4.0) ## College with Potential for Excellence by UGC #### **DST-FIST** supported #### **Department of Mathematics** #### References #### Text Books: 1 Lokenath Debnath, Dambaru Bhatta: Integral Transforms and Their Applications, Chapman and Hall/CRC; 3rd edition, 2014. - 2 Sreenadh S. Ranganatham S. Prasad M. V. S. S. N. & Babu, Ramesh V.: Fourier Series and Integral Transforms. S. Chand Publishing, 2014. - 3 A. N. Srivastava: Integral Transforms and Fourier Series. Narosa Publications, 2012. - 4 मध्यप्रदेश हिंदी ग्रंथ अकादमी की पुस्तके। #### Reference Books: 1 I. N. Sneddon: The use of integral transform. McGraw Hill, 1972. 2 Murray R. Spiegel. Laplace transform, Schaum's Series, McGraw Hill Education, 1st edition, 1965. My And the Jolana