Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST** supported

**Department of Mathematics** 

# Faculty of Science

Bachelor of Science (B.Sc.)

**SUBJECT: Mathematics** 

B.Sc. V Semester

**Paper-Core – Elements of Discrete Mathematics** 

**Course Outcomes** 

| CO. No. | Course Outcomes                                                          | Cognitive |
|---------|--------------------------------------------------------------------------|-----------|
|         |                                                                          | Level     |
| CO1     | Comprehend Indian Logic and its influence on Modern Logic                | U, An, Ap |
|         | Analyse and Apply Relations and Lattices to Real World                   |           |
| CO2     | Correlate Boolean Algebra to Switching Circuit and Generate Applications | U, An, Ap |
|         | in Real Life. Analyse and Evaluate a Minimal Boolean Function            |           |
| CO3     | Deduce the Practicality of Graph Theory and implement the techniques in  | U, An, Ap |
|         | Real Life perspective.                                                   |           |
| CO4     | Understand and Apply Trees and Matrix Representation of Graphs           | U, An, Ap |

Credit and Marking Scheme

|        |         |          | Marks         |             |
|--------|---------|----------|---------------|-------------|
| Theory | Credits |          | Total Mariles |             |
|        |         | Internal | External      | Total Marks |
|        | 6       | 40       | 60            | 100         |
| Total  | 6       | 100      |               |             |

**Evaluation Scheme** 

|        | Marks                                                 |                          |  |  |
|--------|-------------------------------------------------------|--------------------------|--|--|
| Theory | Internal                                              | External                 |  |  |
|        | 3 Internal Exams of 20 Marks each during the Semester | 1 External Exams         |  |  |
|        | (Best 2 will be taken)                                | (At the End of Semester) |  |  |

Mila Dint purit

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST supported** 

**Department of Mathematics** 



# Content of the Course Theory

No. of Lectures Hours per Week: 6 Hours. per Week

Total No. of Lectures: 90 Hours.

Maximum Marks: 60

| Unit |       | Topics                                                | No. of Lectures     |
|------|-------|-------------------------------------------------------|---------------------|
| l    | 1.1   | Indian Logic                                          | 1,000 02 = 0.010100 |
|      | 1.1.1 | Origins                                               |                     |
|      | 1.1.2 | The schools Vaisheshika                               |                     |
|      | 1.1.3 | Catuskoti                                             |                     |
|      | 1.1.4 | Nyaya                                                 |                     |
|      | 1.1.5 | Jain Logic                                            |                     |
|      | 1.1.6 | Buddhist Logic                                        |                     |
|      | 1.1.7 | Navya-Nyaya                                           |                     |
|      | 1.1.8 | Influence of Indian Logic on Modern Logic             |                     |
|      | 1.1.9 | Boolean Logic and Indian Thoughts                     |                     |
|      | 1.2   | Relations                                             | 34                  |
|      | 1.2.1 | Binary, Inverse, Composite and Equivalence relation   |                     |
|      | 1.2.2 | Equivalence classes and its properties                |                     |
|      | 1.2.3 | Partition of a set                                    |                     |
|      | 1.2.4 | Partial order relation                                |                     |
|      | 1.2.5 | Partially ordered and totally ordered sets            |                     |
|      | 1.2.6 | Hasse diagram                                         |                     |
|      | 1.3   | Lattices                                              |                     |
|      | 1.3.1 | Definition and examples                               |                     |
|      | 1.3.2 | Dual, bounded, distributive and complemented lattices |                     |
| 11   | 2.1   | Boolean Algebra                                       | 34                  |
|      | 2.1.1 | Definition and properties                             |                     |
|      | 2.1.2 | Switching circuits and its applications               |                     |
|      | 2.1.3 | Logic gates and circuits                              |                     |
|      | 2.2   | Boolean Functions                                     |                     |
|      | 2.2.1 | Disjunctive and conjunctive normal forms              |                     |
|      | 2.2.2 |                                                       |                     |
|      | 2.3   | Minimize the Boolean function using Karnaugh Map      |                     |

my gus Mila

ZXY)

Jodana,

# Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

# College with Potential for Excellence by UGC

## **DST-FIST** supported

## **Department of Mathematics**

| 111 | 3. Graphs:                                                    | 20 |
|-----|---------------------------------------------------------------|----|
|     | 3.1 Definition and types of graphs                            | 28 |
|     | 5.2 Subgraphs                                                 |    |
|     | 3.3 Walk, path and circuit                                    |    |
|     | 3.4 Connected and disconnected graph                          |    |
|     | 3.5 Euler graph                                               |    |
|     | 3.6 Hamiltonian path and circuit                              |    |
|     | 3.7 Dijkstra's Algorithm for shortest paths in weighted graph |    |
| IV  | 4. Tree:                                                      | 24 |
|     | 4.1 Trees and properties                                      | 24 |
|     | 4.2 Rooted, Binary and Spanning tree                          |    |
|     | 4.3 Rank and nullity of a graph                               |    |
|     | 4.4 Kruskal's and Prim's Algorithm                            |    |
|     | 4.5 Cut- set and Its Properties                               |    |
|     | 4.6 Fundamental Circuits and Cut- set                         |    |
|     | 4.7 Planar graphs                                             |    |
|     | 4.8 Kuratowski's two graph                                    |    |
|     | 4.9 Matrix representation of graph                            |    |
|     | 4.9.1 Incidence                                               |    |
|     | 4.9.2 Adjacency                                               |    |
|     | 4.9.3 Circuit                                                 |    |
|     | 4.9.3 Cut – Set                                               |    |
|     | 4.9.4 Path                                                    |    |

# References

#### **Text Books:**

- 1. J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications To Computer Science, McGraw Hill Education, 1<sup>st</sup> edition, 2017.
- 2. Satinder Bal Gupta, C. P. Gandhi: Discrete Structures, Laxmi Publication, 2010.
- 3. C. L. Liu: Elements of Discrete Mathematics, Mac Graw Hill Education, 4th edition, 2017.
- 4. Narsingh Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice Hall India Learning Private Limited, 1997.
- 5. मध्यप्रदेश हिंदी ग्रन्थ अकादमी की पुस्तके।

#### Reference Books:

1. Seymour Lipschutz and Mark Lipson: Discrete Mathematics (Schaums Outline),

Mita Lunte

Zzw.V

Andana.

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

## College with Potential for Excellence by UGC

## **DST-FIST** supported

#### Department of Mathematics

Mac Graw Hill Education, 3rd edition, 2017.

- 2. Edgar G. Goodaire and Michael M. Parmenter.
- 3. Discrete Mathematics with Graph Theory, Pearson Education Pt. Ltd., Indian Reprint 2003

0 0000

My gos

Mila

Just XX

Jalangs

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST** supported

**Department of Mathematics** 

# **Faculty of Science**

Bachelor of Science (B.Sc.)

SUBJECT: MATHEMATICS

B.Sc. V Semester

Paper- Disciplne Specific Elective

**Numerical Methods and Scientific Computation** 

#### **Course Outcomes**

| CO.No. | Course Outcomes                                                                    | Cognitive<br>Level |
|--------|------------------------------------------------------------------------------------|--------------------|
| CO1    | Understand numerical methods to find the solution of a system of linear equations. | U                  |
| CO2    | Compute interpolation value for real data.                                         | Е                  |
| CO3    | Find quadrature by using various numerical methods.                                | Е                  |
| CO4    | Solve system of linear equations by using various numerical techniques.            | Ap                 |
| CO5    | Obtain solutions of ordinary differential equations by using numerical methods.    | Ap                 |

Credit and Marking Scheme

|        | Credits | Ma       | ırks     | m . 135 .   |
|--------|---------|----------|----------|-------------|
|        | Credits | Internal | External | Total Marks |
| Theory | 4       | 40       | 60       | 100         |
| Total  | 4       |          | 100      |             |

## **Evaluation Scheme**

|        |                              | Marks                    |  |
|--------|------------------------------|--------------------------|--|
|        | Internal                     | External                 |  |
| Theory | 3 Internal Exams of 20 Marks | 1 External Exams         |  |
|        | (During the Semester)        | (At the End of Semester) |  |
|        | (Best 2 will be taken)       | ( Semester)              |  |

0000

Wy A

lunti

XXXX

W/ X

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST** supported

**Department of Mathematics** 

# **Content of the Course**

Theory

No. of Lectures (in hours per week):4.5 Hrs. per week

Total No. of Lectures: 60 Hrs.

Maximum Marks: 60

| Methods for solving Algebraic and Transcendental Equations: 1.1 Ramanujan 1.2 Bisection 1.3 Regula Falsi 1.4 Secant 1.5 Newton-Raphson | Lectures<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1 Kamanujan 1.2 Bisection 1.3 Regula Falsi 1.4 Secant 1.5 Newton-Raphson                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul><li>1.3 Regula Falsi</li><li>1.4 Secant</li><li>1.5 Newton-Raphson</li></ul>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.4 Secant 1.5 Newton-Raphson                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.5 Newton-Raphson                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.5 Newton-Raphson                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Internal 12 have                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| interpolation and Numerical Integration:                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.1 Lagrange Interpolation                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.2 Finite difference operators                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.3 Interpolation formula using Differences                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.3.1 Gregory-Newton Forward Difference Interpolation                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.3.2 Gregory-Newton Backward Difference Interpolation                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.4 Numerical Integration                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.4.1 Newton-Cote's formulae                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.4.2 Trapezoidal rule                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.4.3 Simpson's 1/3 Rule                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.4.4 Simpson's 3/8 Rule                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.1 Direct method for solving system of linear equations                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.1.1 Gauss elimination                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.1.2 LU decomposition                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.1 Single step methods                                                                                                                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.1.3 Fuler                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        | Interpolation and Numerical Integration:  2.1 Lagrange Interpolation  2.2 Finite difference operators  2.3 Interpolation formula using Differences  2.3.1 Gregory-Newton Forward Difference Interpolation  2.3.2 Gregory-Newton Backward Difference Interpolation  2.4 Numerical Integration  2.4.1 Newton-Cote's formulae  2.4.2 Trapezoidal rule  2.4.3 Simpson's 1/3 Rule  2.4.4 Simpson's 3/8 Rule  2.4.5 Gauss Integration  Methods to Solve System of Linear Equations:  3.1 Direct method for solving system of linear equations |

Mila Mila

# Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

# College with Potential for Excellence by UGC

#### **DST-FIST** supported

#### Department of Mathematics

| 4.2 Multistep methods     |  |
|---------------------------|--|
| 4.2.1 Predictor-corrector |  |
| 4.2.2 Modified Euler      |  |
| 4.2.3 Milne-Simpson       |  |

#### References

#### Text Books:

- 1. S. S. Sastry: Introductory Methods of Numerical Analysis, Prentice Hall India Learning Private Limited. Fifth edition, 2012.
- 2. E. Balagurusamy: Numerical Methods, Tata McGraw Hill Publication, 2017.
- 3. मध्यप्रदेश हिंदी ग्रंथ अकादमी की पुस्तके।

#### Reference Books:

1. M.K. Jain, S. R. K. Iyengar, R. K. Jain, Numerical Method for Scientific and Engineering Computation, New Age International (P) Ltd., 1999.

2. Saxena H. C.: Finite Differences and Numerical Analysis, S Chand, 2010.

my gril

ila Dunti King

Jo Joura /

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST** supported

**Department of Mathematics** 

# Faculty of Science

Bachelor of Science (B.Sc.) SUBJECT: Mathematics

B.Sc. VI Semester

Paper-Core – FUZZY SETS AND THEIR APPLICATIONS

## **Course Outcomes**

| CO. No. | Course Outcomes  Course Outcomes                                                                                                                 | Cognitive |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|         |                                                                                                                                                  | Level     |
| CO1     | Understand the difference between crisp sets and fuzzy sets, Fuzzy membership function, types and operations of fuzzy sets and their properties. | U, An, Ap |
| CO2     | Fuzzy numbers and fuzzy arithmetic.                                                                                                              | U, An     |
| CO3     | Basic concepts of fuzzy relations, fuzzy graphs and fuzzy logic.                                                                                 | U, An, Ap |
| CO4     | Knowledge of m fuzzy sets and intuitionistic fuzzy sets. Understand Fuzzy relations, Crisp v/s Fuzzy relations.                                  | U, An, Ap |

**Credit and Marking Scheme** 

|        | Credits |          | _        |               |
|--------|---------|----------|----------|---------------|
| Theory |         | Internal | External | — Total Marks |
|        | 6       | 40       | 60       | 100           |
| Total  | 6       | 100      |          |               |

# **Evaluation Scheme**

|        | Marks                                                 |                          |
|--------|-------------------------------------------------------|--------------------------|
| Theory | Internal                                              | External                 |
|        | 3 Internal Exams of 20 Marks each during the Semester | 1 External Exams         |
|        | (Best 2 will be taken)                                | (At the End of Semester) |

in And

D. itu

His/

W 3

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST** supported

**Department of Mathematics** 



# Content of the Course

Theory

No. of Lectures Hours per Week: 6 Hours, per Week

Total No. of Lectures: 90 Hours.

Maximum Marks: 60

|      | wantan warks. 00                                                                                                                                                                                                                                                                                                                                                                 |                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Unit | Topics                                                                                                                                                                                                                                                                                                                                                                           |                 |
| I    | Support height purlous of a f                                                                                                                                                                                                                                                                                                                                                    | No. of Lectures |
|      | Support height nucleus of a fuzzy set, cardinality of a fuzzy set containment of two fuzzy sets, degree of subsethood, Fuzzy set, Membership function, Basic definition and concepts, Types of Fuzzy sets- normal subnormal fuzzy set, normalization $\alpha$ -cut set, strong $\alpha$ -cut, convex fuzzy set, necessary and sufficient condition for convexity of a fuzzy set. |                 |
| II   | Operations on fuzzy sets, Union, Intersection, Complement of a fuzzy set, Decomposition of fuzzy sets, Cartesian Product, Algebraic product, Product of a fuzzy set with a crisp number, contract intensification and fuzzification Bounded sum and difference, t-norms, t-conorms, Power of a fuzzy set, Disjunctive sum of two fuzzy sets, examples                            | 34              |
| 111  | Properties of fuzzy sets- commutative, associative, distributive, idempotent, identity, involution, De-Morgan's laws, and their proofs, equality of two fuzzy sets, examples.                                                                                                                                                                                                    | 28              |
| IV   | The Zadeh Extension Principle, Fuzzy numbers, Fuzzy arithmetic,                                                                                                                                                                                                                                                                                                                  |                 |
|      | Fuzzy relations, Crisp v/s Fuzzy relations, Composite Fuzzy relation, Binary Fuzzy relations, Fuzzy equivalence relation, Fuzzy compatibility relation, Fuzzy relation equation, Similarity relations Fuzzy graphs.                                                                                                                                                              | 24              |
|      |                                                                                                                                                                                                                                                                                                                                                                                  |                 |

## References

#### Text Books:

- G.J. Klir and Yuan, Fuzzy sets and Fuzzy Logic: The compositional rule of inference, Prentice Hall of India, New Delhi, 1995.
- 2. H.J. Zimmermann, Fuzzy set Theory and its Applications, Allied publishers Ltd, New Delhi 1991.

## Reference Books:

- 1. Pundir and Pundir ,Fuzzy Sets and their Applications , Pragati Prakashan, Meerut, 2012
- 2. Timothy J.Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, 2010

m mil

Mila ...leut

Jan /

Holono,

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

DST-FIST supported

**Department of Mathematics** 

Bachelor of Science (B.Sc.) SUBJECT: Mathematics

**B.Sc. VI Semester** 

Paper- Disciplne Specific Elective (DSE-1),

Paper-1

Advanced Numerical Methods and Scientific Computation

## **Course Outcomes**

| CO.No. | Course Outcomes                                                                                                                         | Cognitive<br>Level |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| COI    | Understand and evaluate Hermite Interpolation, Piecewise Interpolation                                                                  | U, E               |
| CO2    | Analyze and evaluate Spline Interpolation, Bivariate Interpolation and Lagrange Bivariate Interpolation.                                | An, E              |
| CO3    | Analyze ,evaluate and apply Approximation , Find Least Square approximation                                                             | An, E, Ap          |
| CO4    | Evaluate, analyze and apply extrapolation methods, Richardson's extrapolation ordinary differential equations and Difference Equations. | E, An, Ap          |

Credit and Marking Scheme

|        | Credits | Marks    |          |             |
|--------|---------|----------|----------|-------------|
|        | Credits | Internal | External | Total Marks |
| Theory | 4       | 40       | 60       | 100         |
| Total  | 4       |          | 100      | 100         |

## **Evaluation Scheme**

|        | I                                                                         | Marks                                     |
|--------|---------------------------------------------------------------------------|-------------------------------------------|
|        | Internal                                                                  | External                                  |
| Theory | 3 Internal Exams of 20 Marks (During the Semester) (Best 2 will be taken) | l External Exams (At the End of Semester) |

my Mila

July 1

M

Andanas

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST** supported

**Department of Mathematics** 

# Content of the Course Theory

No. of Lectures (in hours per week): 4.5 Hrs. per week
Total No. of Lectures:60Hrs.

Maximum Marks: 60

| Unit | Topics                                                                                                                                                                                                                                                                                                                                                                               | No. Of<br>Lectures |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| I    | <ol> <li>Interpolation:         <ol> <li>Hermite Interpolation</li> <li>Piecewise Interpolation</li> <li>Piecewise Linear Interpolation</li> <li>Piecewise Quadratic Interpolation</li> <li>Piecewise Cubic Interpolation</li> </ol> </li> <li>Piecewise Cubic Interpolation using Hermite Type Data</li> </ol>                                                                      | 18                 |
| II   | <ul> <li>2.1 Spline interpolation:</li> <li>2.1.1 Quadratic spline interpolation</li> <li>2.1.2 Cubic spline interpolation</li> <li>2.1.3 Natural Spline</li> <li>2.2 Bivariate interpolation</li> <li>2.2.1 Lagrange Bivariate interpolation</li> <li>2.2.2 Newton's Bivariate interpolation for Equispaced Points</li> </ul>                                                       | 18                 |
| III  | <ul> <li>3.1 Approximation:</li> <li>3.1.1 L<sup>p</sup> Norm for Discrete Data and Continuous Data</li> <li>3.1.2 Euclidean Norm for Discrete Data and Continuous Data</li> <li>3.1.3 Uniform Norm for Discrete Data and Continuous Data</li> <li>3.2 Least squares Aproximation</li> <li>3.2.1 Gram-Schmidt Orthogonalizing Process</li> <li>3.2.2 Legendre Polynomials</li> </ul> | 22                 |
| IV   | <ul> <li>4.1 Extrapolation methods:</li> <li>4.1.1 Richardson's Extrapolation</li> <li>4.2 Ordinary differential equations</li> <li>4.2.1 Reduction of Higher order Equations to the system of first order</li> <li>Differential Equations</li> <li>4.2.2 System of Linear first order Differential Equations with Constant</li> <li>Coefficients</li> </ul>                         | 22                 |

my gus Mila

apris/

Andawa?

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

# College with Potential for Excellence by UGC

## **DST-FIST** supported

## **Department of Mathematics**

| 4.3 Difference Equations. |  |
|---------------------------|--|
|                           |  |

## References

## Text Books:

- 1. Numerical Method for scientific and Engineering computation by M.K. Jain , S.R.K. Iyenger , R.K. Jain south Edition (2003) , New Age .
- 2. मध्यप्रदेश हिंदी ग्रंथ अकादमी की पुस्तके।

#### Reference Books:

- 1. Saxena H.C.: Finite Differences and Numerical Analysis, S Chand, 2010.
- 2. S.S. Sastry: Introductory Methods of Numerical Analysis, Prentice Hall India Learning Private Limited, Fifth ediotion, 2012.

0000

my July

¥.

\*\*/

A.

Jodona

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST** supported

**Department of Mathematics** 

# **Faculty of Science**

Bachelor of Science (B.Sc.)

SUBJECT: MATHEMATICS

B.Sc. VI Semester

Paper- Discipline Specific Elective (DSE)- 2

**Integral Transform** 

#### **Course Outcomes**

| CO.No. | Course Outcomes                                                                                                                                         | Cognitive<br>Level |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| COI    | Understanding about Laplace transform and its properties.                                                                                               | U                  |
| CO2    | Solve ordinary differential equations using Laplace transform.                                                                                          | Ap                 |
| CO3    | Familiarise with Fourier transform of functions. Relation between Laplace and Fourier transform. Apply the concept of the course in real life problems. | U, Ap              |
| CO4    | Explain Parseval's identity and applications of Fourier transform to boundary value problems.                                                           | AP                 |

# **Credit and Marking Scheme**

|        | Credits | Marks    |          | 77          |
|--------|---------|----------|----------|-------------|
|        | Credits | Internal | External | Total Marks |
| Theory | 4       | 40       | 60       | 100         |
| Total  | 4       |          | 100      |             |

## **Evaluation Scheme**

|        |                              | Marks                    |  |
|--------|------------------------------|--------------------------|--|
|        | Internal                     | External                 |  |
| Theory | 3 Internal Exams of 20 Marks | l External Exams         |  |
|        | (During the Semester)        | (At the End of Semester) |  |
|        | (Best 2 will be taken)       | (                        |  |

My And Mila

Argusa,

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

College with Potential for Excellence by UGC

**DST-FIST** supported

**Department of Mathematics** 

## **Content of the Course**

## Theory

No. of Lectures (in hours per week):4.5 Hrs. per week

Total No. of Lectures: 60 Hrs.

Maximum Marks: 60

| Unit | Topics                                                                    | No. of Lectures |
|------|---------------------------------------------------------------------------|-----------------|
| l    | Laplace Transform:                                                        | 25              |
|      | 1.1 Linearity property                                                    |                 |
|      | 1.2 Existence theorem                                                     |                 |
|      | 1.3 Shifting theorem                                                      |                 |
|      | 1.4 Change of scale property                                              |                 |
|      | 1.5 Laplace transform of derivatives and integrals                        |                 |
|      | 1.6 Differentiation and integration of the Laplace transforms             |                 |
|      | 1.7 Multiplication and division by 't'                                    |                 |
|      | 1.8 Periodic function                                                     |                 |
| H    | Inverse Laplace Transform:                                                | 25              |
|      | 2.1 Linearity property                                                    |                 |
|      | 2.2 Shifting theorem                                                      |                 |
|      | 2.3 Change of scale property                                              |                 |
|      | 2.4 Inverse Laplace transforms of derivatives and integrals               |                 |
|      | 2.5 Multiplication and division by powers of p                            |                 |
|      | 2.6 Convolution theorem                                                   |                 |
|      | 2.7 Heaviside expansion theorem                                           |                 |
| Ш    | Application of Laplace Transform:                                         | 15              |
|      | 3.1 Solution of ordinary differential equation with constant coefficients |                 |
|      | 3.2 Solution of ordinary differential equation with variable coefficients |                 |
| IV   | Fourier Transform:                                                        | 15              |
|      | <b>4.1</b> Linearity property                                             |                 |
|      | 4.2 Shifting theorem                                                      |                 |
|      | 4.3 Change of scale property                                              |                 |
|      | 4.4 Modulation                                                            |                 |
|      | 4.5 Convolution theorem                                                   |                 |
|      | <b>4.6</b> Fourier transform of derivatives                               |                 |
|      | 4.7 Relations between Fourier transform and Laplace transform             |                 |
|      | 4.8 Parseval's identity for Fourier transform                             |                 |
|      | 4.9 Solution of differential equation using Fourier transform             |                 |

Mila Punt

July 1

A daug?

Reaccredited 'A++' by NAAC with CGPA (3.58/4.0)

## College with Potential for Excellence by UGC

#### **DST-FIST** supported

#### **Department of Mathematics**

#### References

#### Text Books:

1 Lokenath Debnath, Dambaru Bhatta: Integral Transforms and Their Applications, Chapman and Hall/CRC; 3<sup>rd</sup> edition, 2014.

- 2 Sreenadh S. Ranganatham S. Prasad M. V. S. S. N. & Babu, Ramesh V.: Fourier Series and Integral Transforms. S. Chand Publishing, 2014.
- 3 A. N. Srivastava: Integral Transforms and Fourier Series. Narosa Publications, 2012.
- 4 मध्यप्रदेश हिंदी ग्रंथ अकादमी की पुस्तके।

#### Reference Books:

1 I. N. Sneddon: The use of integral transform. McGraw Hill, 1972.

2 Murray R. Spiegel. Laplace transform, Schaum's Series, McGraw Hill Education, 1st edition, 1965.

My

And the

Jolana